

1

Kinetise Source Code

1. Getting Started
This document describes the overview of the architecture of the application source code
generated by Kinetise. It explains most essential terms and concepts and provides example
scenarios for customization. The scenarios assume that you keep working in Kinetise Editor,
using Custom Widgets or custom JavaScript actions, which do not have any effect from start,
but for which you can provide your own implementation to provide missing functionality or
framework integration.

The last part of the document provides hands-on tutorials for specific scenarios for both
Android and iOS codebase.

2

2. Application Architecture

Overview
Kinetise produces cross-platform applications working on iOS and Android operating systems.
Kinetise defines its own application abstraction layer that is natively implemented on both
platforms. Uniform application description is processed at runtime and translated to native
code that achieves same behavior on all different mobile devices.

Application package
Application package contains all the embedded assets (mainly images) application uses and
most importantly project.xml file that describes entire application structure. project.xml is
parsed at runtime to instantiate user interface views and configure application behavior.
When application is edited in Kinetise Editor a new application package is created. It is enough
to replace the package in the project structure to apply changes into the project.

Descriptors

Descriptors are data objects representing contents of project.xml file (so all the settings
originating from Kinetise Editor). They represent and describe all possible views managed by
the app: screens, overlays and controls. Descriptors tell how to layout them, render them, and
what are the data contents and reaction to events. In general, descriptors form a runtime
model of an application.

Based on the descriptors application creates actual screens and view structure as needed.

Screens
Application consists of any number of screens. At most one screen is active and displayed at
a time. Screen renders over entire available phone display. Screen is divided into three
sections: header (optional, located at screen top), body (taking whole available space between
other two sections, vertically scrollable) and navigation panel (optional, located at screen
bottom). Every section may contain any number of child views, so-called controls.
Kinetise includes a set of standard navigation operations allowing to change currently active
screen (including transition animations). Screen state (as a descriptor object) is saved in the
history stack every time a screen is changed and is used when app returns back to it.
Every screen has its unique ID. There are three screens with special handling.

 Splash screen – the first screen of the application, by default shown for a short period

of time, after which Main screen is loaded.

 Login screen – if defined, it is first screen of the application (replaces Splash screen)

and the only one where user logged-in operations are permitted. Also, app will return

to Login screen after user is logged out from the app.

3

 Main screen – the screen that will be loaded after Splash screen timeout or (by default)

after user login on Login screen. Application with Login screen will start on Main screen

if logged-in user session exists.

Screen may be entered “with context” meaning that a specific data item is a context for the
screen. This allows controls on the screen to load data from the context data item. This is used
to achieve Detail screen behavior.

Overlays
Application may define a list of overlays that act as menus, popups, etc.. At most one overlay
can be displayed on top of the currently active screen. It can appear from any side of the
screen (or be centered) and it can slide over the screen or move it alongside. Overlay may be
of any size and may contain any child controls structure. Same overlay may be displayed over
any screen.

Layout system
Kinetise-based applications use own measure/layout system to ensure views look the same
on any platform. The main assumptions of the layout system are:

 View hierarchy is built out of controls

 A control may be a container. Containers may contain any number of child controls.

Non-container controls, in turn, cannot have any children.

 Containers are either horizontal, vertical or thumbnail. Horizontal and vertical

containers lay out their children linearly, from left-to-right (horizontal) or from top-to-

bottom (vertical). Additionally, controls may define horizontal and vertical alignment

that adjust their positioning inside a container. Thumbnail container lays out it children

from left to right until there is space, and then wraps to the next line and proceeds like

that until all children are laid out.

 Dimensions are expressed in the following units:

o MIN – special value indicating that dimension should as small as possible to fit

view contents

o MAX – special value indicating that dimension should as big as remaining space

in its parent (or equal to parent dimension in case of scrolled parents)

o KPX – unit indicating 1/1000 part of the size of the shorter edge of the available

display

o % - unit indicating percent of parent’s corresponding dimension

 Measure and layout calculations are conducted first on the descriptors layer, meaning

that after calculations pass descriptors hold actual size and position information

(expressed in on-screen pixels) for all the views. Then, the controls take the calculated

values and use them to render actual views on the screen.

4

Controls
Controls are special Kinetise views that represent Widgets from Kinetise Editor. Every control
share some common properties like: width, height, paddings, margins, size and color of
optional border, optional rounded corners, background color or image, optional on-click
action. Content of the control is specific to the control itself and may be any combination of
native views. Every control has its dedicated descriptor that holds all the common parameters
as well as all control-specific parameters coming from project.xml and the current control data
state.
There are two specific control types, i.e. data feed controls and form controls, described
below.

Data feed controls
Data feed controls represent controls that can retrieve data from external source, process and
display that data. Data feed control defines URI of the data source, optional request
parameters, type of expected data (JSON/XML) and hints on how data should be read from
the raw data source response.
Data response is parsed into list of items, which are then rendered by the control. Most typical
data feed control is List control that creates dynamically separate item control (container) for
each item received from data source.

Form controls
Form controls represent controls that can take input from the user like text inputs,
checkboxes, dropdown selectors etc. Logically, form controls are always grouped inside a
container that also contains a Send button. Action attached to the Send button collects all the
values from the form controls and sends them to the data target defined in the action itself
(most typically, to REST API endpoint). Data entry for every control is identified by control’s
form ID that must be unique in the scope of the form container.
Notable features of form controls are value validation and binding of a initial value.

Variables
Some of the descriptor properties are expressed as variables - objects that can be resolved at
runtime to return dynamic value. Kinetise applications use variables to bind dynamic data to
a specific control at a given time.
Internally variables are expressed as textual scripts (either KinetiseScript, or JavaScript,
coming from project.xml) that are evaluated at runtime, translated into internal
implementations and executed to retrieve value. Most Scripts are created by Kinetise Editor
behind the scenes, but it is possible to inject user-created scripts as well.
Typical usage is a variable that retrieves field value from a data feed item.

Actions
Actions are objects attached to Kinetise events and executed when the event happens. Most
typical usage is an on-click action of every Kinetise control.

5

Internally actions are expressed as textual scripts (either KinetiseScript, or JavaScript, coming
from project.xml) that are evaluated at runtime, translated into internal implementations and
executed. Scripts are created by Kinetise Editor behind the scenes, but it is possible to inject
user-created scripts as well.

KinetiseScript
KinetiseScript is a simple script language used to encode dynamic actions and variables to be
resolved at runtime. It can be recognized by the following scheme: [d]…[/d]. KinetiseScript is
used internally by Kinetise Editor and is not advised to be used directly or modified manually
in any way. For user-supplied scripts JavaScript interface is recommended.

Localization support
Kinetise allows applications to switch active language at runtime, at any time, without
restarting of the application. Application package contains a translations dictionary for every
supported language as separate strings.json file for each language.

6

3. Customization
Specific architecture of Kinetise-based applications require specific approach for its
customization. We strongly recommend keeping the existing architecture in place and using
the extension capabilities that are supported by Kinetise. You may attempt whatever
customization and application extension as you feel appropriate, although we suggest starting
with the supported scenarios. They include:

Providing custom control

Create custom control class and implement custom look and behavior. Custom controls can

be added to project.xml from Kinetise Editor (by dragging Custom Widget to the screen) to

ease up the integration. You need to give such Widget a name and use the same name in code,

as presented below, in sections for specific platforms. Additionally, Kinetise Editor allows to

define a set of key-value pairs for every Custom Widget. They will be accessible by a custom

control class as well.

Providing custom screen

This scenario is almost the same as the one above, with the only difference that you should

use a single Custom Widget on the entire screen and set its dimensions to MAX/MAX. Such

Widget will fill the screen and the corresponding custom control may contain children view

structure is necessary to represent custom screen.

Providing custom JavaScript actions
Provide implementation for custom JavaScript action that can be invoked from script defined

for any action using Kinetise Editor. When action will be executed by the application, the

corresponding script will be evaluated and your custom action executed. All custom actions

should be invoked via to custom JavaScript object (acting as namespace). Example of

invoking custom action as defined in Kinetise Editor:

7

Use Kinetise API of actions
Most of the crucial operations Kinetise components may do are implemented as an internal

Kinetise API. Custom code may invoke this API as needed to access most of the Kinetise

features. API is access via Action Manager singleton class.

8

4. Customization Tutorial – Android
This section describes how to start with each of the basic customization scenarios Kinetise
supports. The below content is specific for Android version of the project.

General notes
Android project is a usual Gradle-based project that can be opened with Android Studio.
Project contains kinetise module, which constitutes core Kinetise codebase. We suggest to not
modify that code if not necessary, as it will have global effect on the application. There is also
app module, where all your specific customizations should be placed.

Providing custom control

Description
Given you added a Custom Widget with name to your application using Kinetise Editor, the
minimum of two steps are needed to have the custom control working:

1. Create a class for your control extending AGCustomControlView
2. Register your class in ViewFactoryManager providing Custom Widget name (as

provided in Kinetise Editor, but prefixed with controlcustom value)

Location
It is not strictly enforced, although we suggest to:

1. Add custom control classes to com.kinetise.app.views package of app module
2. Register view in com.kinetise.app.App onCreate() method.

Example
Custom control example presenting a control using Android AppCompat Button and setting
its text to value provided in Kinetise Editor as additional property of Custom Widget under key
text.
package com.kinetise.app.views;

import (...)

public class CustomCompatButton extends AGCustomControlView {

 private static final String TEXT_ATTRIBUTE = "text";

 private final View mButton;

 public CustomCompatButton(SystemDisplay display,

 AGCustomControlDataDesc desc) {

 super(display, desc);

 mButton = createCompatButton();

 addView(mButton);

 }

 private View createCompatButton() {

 AppCompatButton button = new AppCompatButton(mDisplay.getActivity());

 button.setText(mDescriptor.getAttribute(TEXT_ATTRIBUTE));

 return button;

 }

}

9

Registering the above custom control class to match compatbutton name provided in Kinetise
Editor (actual XML node name in project.xml is controlcustomcompatbutton).

public class App extends KinetiseApplication {

 @Override

 public void onCreate() {

 super.onCreate();

 ViewFactoryManager.registerCustomView("controlcustomcompatbutton",

 CustomCompatButton.class);

 }

}

Providing custom screen
It essentially the same as for Providing custom control scenario, assuming that control may
have any child view hierarchy.

Providing custom JavaScript actions

Description
Kinetise used DuckTape library for JavaScript engine. To provide implementation for custom
actions you need to extend ICustomJSInterface interface with the custom actions needed and
provide their implementation in CustomJSInterface class. Follow DuckTape rules for defining
the interface.

Location
com.kinetise.app.javascript.ICustomJSInterface
com.kinetise.app.javascript.CustomJSInterface

Example

ICustomJSInterface.java
package com.kinetise.app.javascript;

public interface ICustomJSInterface {

 void action();

 String action1();

 void action2(Integer x);

 //define any additional custom actions here:

}

CustomJSInterface.java
package com.kinetise.app.javascript;

public class CustomJSInterface implements ICustomJSInterface {

 @Override

 public void action() {

 //provide implementation

 }

10

 @Override

 public String action1() {

 //provide implementation

 return "";

 }

 @Override

 public void action2(Integer x) {

 //provide implementation

 }

 //provide implementation for any additional custom methods you added

}

Use Kinetise API of actions

Description
Kinetise API is accessed via ActionManager.class, which is a singleton. It implements all
methods used by internal Kinetise actions.

Example

ActionManager.getInstance().goToScreen("screen12345", AGScreenTransition.FADE);

11

5. Customization Tutorial – iOS
This section describes how to start with each of the basic customization scenarios Kinetise
supports. The below content is specific for iOS version of the project.

Providing custom control

Description
You can add custom controls to the application. Controls implementation is devided to data
model known as control descriptor and control view. Control descriptor is created based on
application xml file in XML category. Descriptor must inherit from AGControlDesc and view
must inherit from AGControl. Every control must be registered in AGParser.

Location
Kinetise/Helpers/Parser.m
Kinetise/Application/Controls/Custom/AGCustomDesc.h
Kinetise/Application/Controls/Custom/ AGCustomDesc.m
Kinetise/Application/Controls/Custom/ AGCustomDesc+XML.h
Kinetise/Application/Controls/Custom/ AGCustomDesc+XML.m
Kinetise/Application/Controls/Custom/ AGCustom.h
Kinetise/Application/Controls/Custom/ AGCustom.m

Example
The following example presents all steps needed to create new custom control.

1. Register control in AGParser.m classWithName method. Use name as provided for

Custom Widget in Kinetise Editor prefixed with controlcustom.

#import "AGCustomButtonDesc.h"

…

+ (Class)classWithName:(NSString *)name {

 NSMutableDictionary *classMapper = [[NSMutableDictionary alloc] init];

…

 // Register custom button

 [classMapper setObject:NSStringFromClass([AGCustomButtonDesc class])

forKey:@"controlcustombutton"];

 …

}

2. Add control data model - descriptor. Remember to implement copy method.

AGCustomButtonDesc.h:
#import "AGControlDesc.h"

@interface AGCustomButtonDesc : AGControlDesc

@property(nonatomic, copy) NSString *text;

@end

12

AGCustomButtonDesc.m:
#import "AGCustomButtonDesc.h"

@implementation AGCustomButtonDesc

@synthesize text;

#pragma mark - Initialization

- (void)dealloc {

 [super dealloc];

 [text release];

}

#pragma mark - Copying

- (id)copyWithZone:(NSZone *)zone {

 AGCustomButtonDesc *obj = [super copyWithZone:zone];

 obj.text = text;

 return obj;

}

@end

3. Control descriptor is data model but also acts as bridge between view and XML. Add XML
category to store some information based on control XML. This step is optional.

AGCustomButtonDesc+XML.h:
#import "AGCustomButtonDesc.h"

@interface AGCustomButtonDesc (XML)

@end

AGCustomButtonDesc+XML.m:
#import "AGCustomButtonDesc+XML.h"

#import "AGControlDesc+XML.h"

@implementation AGCustomButtonDesc (XML)

#pragma mark - Initialization

- (id)initWithXML:(GDataXMLNode *)node {

 self = [super initWithXML:node];

 // Initialize based on XML representation

 self.text = [node stringValueForXPath:@"@text"];

 return self;

}

@end

13

4. Finally add control view.

AGCustomButton.h
#import "AGControl.h"

@interface AGCustomButton : AGControl

@end

AGCustomButton.m
#import "AGCustomButton.h"

#import "AGCustomButtonDesc.h"

@interface AGCustomButton()

@property(nonatomic, retain) UIButton *button;

@end

@implementation AGCustomButton

@synthesize button;

#pragma mark - Initialization

- (void)dealloc {

 [super dealloc];

 [button release];

}

- (id)initWithDesc:(AGCustomButtonDesc *)descriptor_ {

 self = [super initWithDesc:descriptor_];

 // Initialize view based on descriptor

 // Add subviews to self.contentView or customize content view by overriding

contentClass method

 self.button = [UIButton buttonWithType:UIButtonTypeSystem];

 [button setTitle:descriptor_.text forState:UIControlStateNormal];

 [self.contentView addSubview:button];

 return self;

}

- (Class)contentClass {

 return [UIView class];

}

#pragma mark - Layout

- (void)layoutSubviews {

 [super layoutSubviews];

 // Layout subviews

 self.button.frame = self.contentView.bounds;

}

@end

Providing custom screen
It essentially the same as for Providing custom control scenario, assuming that control may
have any child views hierarchy.

14

Providing custom JavaScript actions

Description
Kinetise custom JavaScript actions mechanics uses JavaScriptCore framework.
AGJSCustom protocol wraps all custom java script actions.
Add your custom properties or functions in AGJSCustom protocol following JavaScriptCore
framework recommendations.
More about JavaScriptCore https://developer.apple.com/reference/javascriptcore

Location
Kinetise/Helpers/ActionManager/JavaScript/AGJSCustom.h

Kinetise/Helpers/ActionManager/JavaScript/AGJSCustom.m

Example
AGJSCustom.h

#import <JavaScriptCore/JavaScriptCore.h>

@protocol AGJSCustom <JSExport>

- (void)action;

@end

@interface AGJSCustom : NSObject <AGJSCustom>

@end

AGJSCustom.m

#import "AGJSCustom.h"

@implementation AGJSCustom

- (void)action {

 // Put your custom action implementation here

}

@end

Use Kinetise API of actions

Description
Access all application actions through AGApplication singleton. Actions are grouped in
categories.

Location
Kinetise/Helpers/ActionManager/JavaScript/AGActionManager.h
Kinetise/Helpers/ActionManager/JavaScript/AGActionManager+Actions.h
Kinetise/Helpers/ActionManager/JavaScript/AGActionManager+Navigation.h
Kinetise/Helpers/ActionManager/JavaScript/AGActionManager+Forms.h
Kinetise/Helpers/ActionManager/JavaScript/AGActionManager+Authorization.h
Kinetise/Helpers/ActionManager/JavaScript/AGActionManager+Controls.h

https://developer.apple.com/reference/javascriptcore

15

Kinetise/Helpers/ActionManager/JavaScript/AGActionManager+Localization.h
Kinetise/Helpers/ActionManager/JavaScript/AGActionManager+External.h
Kinetise/Helpers/ActionManager/JavaScript/AGActionManager+Logic.h
Kinetise/Helpers/ActionManager/JavaScript/AGActionManager+Text.h

Example
#import "AGActionManager+Navigation.h"

…

[[AGActionManager sharedInstance] goToScreen:nil :nil :@"screen1"];

